contoh soal dan jawaban limit dalam bentuk akar
1. contoh soal dan jawaban limit dalam bentuk akar
Jawab:
8 ⅓
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \lim_{x\to\infty}\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{\sqrt{25x^4+x^3-2x^2}-\sqrt{25x^4-5x^3-3x^2}}\\=\lim_{x\to\infty}\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{\sqrt{25x^4+x^3-2x^2}-\sqrt{25x^4-5x^3-3x^2}}~\frac{\sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}}{\sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}}[/tex]
[tex]\displaystyle=\lim_{x\to\infty}\frac{\left ( \sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}\right )\left ( \sqrt{25x^4+x^3-2x^2}+\sqrt{25x^4-5x^3-3x^2}\right )}{25x^4+x^3-2x^2-\left ( 25x^4-5x^3-3x \right )}\\=\lim_{x\to\infty}\frac{x\left ( \sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}\right )\left ( \sqrt{25x^2+x-2}+\sqrt{25x^2-5x-3}\right )}{6x^3+x^2}[/tex]
[tex]\displaystyle =\lim_{x\to\infty}\frac{\frac{x}{x}~\frac{\sqrt{4x^2+4x-9}+\sqrt{9x^2+x-4}}{x}~\frac{\sqrt{25x^2+x-2}-\sqrt{25x^2-5x-3}}{x}}{\frac{6x^3+x^2}{x^3}}\\=\lim_{x\to\infty}\frac{\left ( \sqrt{4+\frac{4}{x}-\frac{9}{x^2}} +\sqrt{9+\frac{1}{x}-\frac{4}{x^2}}\right )\left ( \sqrt{25+\frac{1}{x}-\frac{2}{x}} -\sqrt{25-\frac{5}{x}-\frac{3}{x^2}}\right )}{6+\frac{1}{x}}\\=\frac{25}{3}\\=8\tfrac{1}{3}[/tex]
2. Contoh soal limit fungsi aljabar metode turunan bentuk akar,beserta penyelesainnya
contoh:
Tentukan nilai dari
Lim x→3 (√x - √3)/(x - 3) = ...
Lim x→3 (√x - √3)/(x - 3) =
Lim x→3 (√x - √3)/((√x - √3)(√x + √3)) =
Lim x→3 1/(√x + √3)) = 1/ (2√3) = 1/6 √3
Contoh :
Lim x→3 (2 - √(2x - 2))/(x - 3) =
dengan menggunakan turunan
(-1/(√(2x - 2))/1 = - 1/2
Semoga membantu
3. Contoh soal limit fungsi aljabar metode turunan bentuk akar sama penyelesainnya yang jelas...
Misalnya
Lim x² - 4
x→2 ------------- hasilnya 0/0, bentuknya harus diubah. Caranya
√x - √2
* Dengan metode aljabar
Lim (x-2)(x+2) (√x-√2)(√x+√2)(x+2)
x→2 ------------- = --------------------------- = (√x+√2)(x+2) = 8√2
√x - √2 √x-√2
Dengan metode turunan
Lim 2x
x→2 ------------------- =2x.2√x = 4x√x = 8√2
1/2(x)^(-1/2)
4. ada yg bisa ngerjakan soal ini berdasarkan limit fungsi gak ?limit x mendekati 1 ,1 per akar x-1 (1 per akar 3x+1 -1 per akar x+3) =diubah ke bentuk sbenarnya sendiri yah,plis..tolong dibantu..
bisa capture dlm bntuk gb aj ga?
5. rumus limit fungsi aljabar dalam bentuk akar
Ini yang biasa atau yang pake teorema. Kalo yg biasa tinggal dimasukkin aja x mendekati brp dg catatan bentuk fungsinya dijabarkan dulu, misal (x kuadrat - 4) jadi (x + 2)(x - 2). Sementara kalo yang pake teorema intinya lim masuk ke akarnya
Misal:
lim (x ->4) akar x
= akar lim (x -> 4) x
= akar 4
= 2
Semoga bisa dipahami ya :) rumus = lim (x ->4) akar x = akar lim (x ->4) x = akar 4 = 2
6. apakah ada contoh soal cerita untuk limit?
lim x"+4x+-2 note = (") pangkat 2 x->2
7. bagaimana bentuk soal dan jawaban limit
contohnya gini...!!
Hitung lah nilai limit berikut ini ... !!!
lim x²+2x-3
x ⇒ 1 x²-1
lim (x+3) (x-1)
x ⇒ 1 (x+1) (x-1)
lim x+3
x ⇒ 1 x+1
= 1 + 3
1 + 1
= 4
2
= 2
8. contoh soal limit beserta solusinya
lim x mendekati 2 = (x² - 2)+3x
penyelesaian :
lim x > 2 = (2² - 2) + 3×2
= (4-2) + 6 = 8
Semoga membantu :)
9. Hitunglah limit fungsj Alljabar bentuk akar Dan limit takhingga
Jawaban:
emmmmmmmmmmm..m.m........mmmmmmmmmmm
Jawaban:
1. 14
2. 37
3. 48
4. 26
Penjelasan dengan langkah-langkah:
maaf ya yg bisa cuman no 1-4
maaf kalau salah, semoga membantu
tolong
jadikan jawaban terbaik ya dan folow
10. tlg contoh soal limit dong
1. Nilai dari lim x→∞ [√(x+1) - √(x-1)] adalah …..
a. -∞
b. -2
c. 0
d. 2
e. ∞
2. Nilai dari lim x→∞ [√(x2+2) - √x2-x)] adalah …..
a. -∞
b. – 1
c. 0
d. 1
e. ∞
klik aja DOC
tolong jadikan yang terbaik ya
11. contoh soal menentukan limit fungsi bentuk tak tentu
ABCDEFGHIJKLMNOPQRSTUVWXYZ
12. contoh soal limit yg di matematika
Jawab:
[tex]\displaystyle \lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}=\cdots[/tex]
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}\\=\lim_{x\to 0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x^3}~\frac{\sqrt{1+\tan x}+\sqrt{1+\sin x}}{\sqrt{1+\tan x}+\sqrt{1+\sin x}}\\=\lim_{x\to 0}\frac{1+\tan x-(1+\sin x)}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\frac{\sin x}{\cos x}-\sin x}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}[/tex]
[tex]\displaystyle =\lim_{x\to 0}\frac{\frac{\sin x-\sin x\cos x}{\cos x}}{x^3\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\sin x(1-\cos x)}{x^3\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=\lim_{x\to 0}\frac{\sin x\left [ 1-\left ( 1-2\sin^2\frac{x}{2} \right ) \right ]}{x^3\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}[/tex]
[tex]\displaystyle =2\lim_{x\to 0}\frac{\sin x}{x}\lim_{x\to 0}\left ( \frac{\sin\frac{x}{2}}{x} \right )^2\lim_{x\to 0}\frac{1}{\cos x\left ( \sqrt{1+\tan x}+\sqrt{1+\sin x} \right )}\\=2(1)\left ( \frac{\frac{1}{2}}{1} \right )^2\frac{1}{1(1+1)}\\=\frac{1}{4}[/tex]
13. contoh soal limit fungsi trigonometri
Tentukan hasil dari soal limit berikut
Tentukan hasil dari soal limit berikut
[tex] \lim_{x \to \inft0} \frac{sin 3x}{x} [/tex]=1
[tex] \lim_{x \to \inft0 \frac{1-cost}{sint} } [/tex]=0
14. Contoh limit akar tak terhingga
semoga membantu ya..
15. soal dan pembahasan limit di tak hingga dengan mengalikan bentuk akar
Mengalikan bentuk akar sekawannya di penyebut
16. contoh soal limit tak tentu nol per nol
Jawab:
[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}=\cdots[/tex]
Penjelasan dengan langkah-langkah:
Tes limit
[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}=\frac{0}{0}[/tex]
Gunakan aturan L'Hopital untuk mempermudah penyelesaian
[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}\\=\lim_{x\to 2}\frac{4x^3-9x^2+4x-4}{4x^3-15x^2+26x-24}\\=\frac{0}{0}[/tex]
Lakukan lagi hingga hasil nya tidak [tex]\displaystyle \frac{0}{0}[/tex]
[tex]\displaystyle \lim_{x\to 2}\frac{4x^3-9x^2+4x-4}{4x^3-15x^2+26x-24}\\=\lim_{x\to 2}\frac{12x^2-18x+4}{12x^2-30x+26}\\=\frac{16}{14}\\=\frac{8}{7}[/tex]
Cara biasa
Faktorkan x⁴ - 3x³ + 2x² - 4x + 8 dengan metode Horner
[tex]\begin{array}{cccccc}\multicolumn{1}{c|}{} & 1 & -3 & 2 & -4 & 8\\\multicolumn{1}{c|}{2} & & 2 & -2 & 0 & -8\\\cline{2-6} & \multicolumn{1}{|c}{1} & -1 & 0 & -4 & \multicolumn{1}{|c}{0}\\\cline{6-6}\multicolumn{1}{c|}{2} & & 2 & 2 & 4\\\cline{2-6} & 1 & 1 & 2 & \multicolumn{1}{|c}{0}\\\cline{5-5}\end{array}[/tex]
Jadi
[tex]\displaystyle x^4-3x^3+2x^2-4x+8=(x-2)^2(x^2+x+2)[/tex]
Faktorkan x⁴ - 5x³ + 13x² - 24x + 20
[tex]\begin{array}{cccccc}\multicolumn{1}{c|}{} & 1 & -5 & 13 & -24 & 20\\\multicolumn{1}{c|}{2} & & 2 & -6 & 14 & -20\\\cline{2-6} & \multicolumn{1}{|c}{1} & -3 & 7 & -10 & \multicolumn{1}{|c}{0}\\\cline{6-6}\multicolumn{1}{c|}{2} & & 2 & -2 & 10\\\cline{2-6} & 1 & -1 & 5 & \multicolumn{1}{|c}{0}\\\cline{5-5}\end{array}[/tex]
Jadi
[tex]\displaystyle x^4-5x^3+13x^2-24x+20=(x-2)^2(x^2-x+5)[/tex]
Maka
[tex]\displaystyle \lim_{x\to 2}\frac{x^4-3x^3+2x^2-4x+8}{x^4-5x^3+13x^2-24x+20}\\=\lim_{x\to 2}\frac{(x-2)^2(x^2+x+2)}{(x-2)^2(x^2-x+5)}\\=\lim_{x\to 2}\frac{x^2+x+2}{x^2-x+5}\\=\frac{2^2+2+2}{2^2-2+5}\\=\frac{8}{7}[/tex]
17. 5 contoh soal limit tak hingga dengan penyelesaiannya!
semoga membantu tapi cuma satu aja sorry
18. contoh soal limit dan limit fungsi aljabarplis bantu jawab
Jawab:
Mapel: Matematika
Kelas: 11
Contoh Soal 1:
Tentukan nilai limit berikut:
lim(x->3) (2x - 5)
Jawaban 1:
Untuk menentukan nilai limit tersebut, kita hanya perlu menggantikan x dengan nilai yang mendekati 3. Jadi, jika kita substitusikan x dengan 3, kita dapat menghitungnya sebagai berikut:
lim(x->3) (2x - 5) = 2(3) - 5 = 6 - 5 = 1
Jadi, nilai limit dari fungsi tersebut saat x mendekati 3 adalah 1.
Contoh Soal 2:
Tentukan nilai limit berikut:
lim(x->-2) (x^2 + 3x - 2) / (x + 2)
Jawaban 2:
Untuk menentukan nilai limit tersebut, kita hanya perlu menggantikan x dengan nilai yang mendekati -2. Jadi, jika kita substitusikan x dengan -2, kita dapat menghitungnya sebagai berikut:
lim(x->-2) (x^2 + 3x - 2) / (x + 2) = (-2)^2 + 3(-2) - 2 / (-2 + 2) = 4 - 6 - 2 / 0
Namun, pada pembagian dengan 0, limit tidak terdefinisi atau dinyatakan sebagai tak hingga. Jadi, nilai limit dari fungsi tersebut saat x mendekati -2 tidak terdefinisi.
Penjelasan dengan langkah-langkah:
Semoga Bermanfaat
19. contoh soal limit fungsi dan jawaban
limit dari x mendekati 3 dari (x^2 + 3x - 18)/(x^2 - 3x)
jawabannya 3
20. Cara mengerjakan soal limit mendekati tak hingga dengan bentuk soal pecahan akar
Fungsi dikalikan dengan sekawan yang ada akarnya. Kemudian, pembilang dan penyebut dibagi dengan x pangkat tertinggi. Lalu masukkan x
Contoh :
limₓ₋∞ (x - √(x - 2))/x = limₓ₋∞ (x - √(x - 2))/x · (x + √(x - 2))/(x + √(x - 2))
limₓ₋∞ (x - √(x - 2))/x = limₓ₋∞ (x² - x + 2)/(x((x + √(x - 2))))
limₓ₋∞ (x - √(x - 2))/x = limₓ₋∞ (x² - x + 2)/(x² + x√(x - 2))
limₓ₋∞ (x - √(x - 2))/x = limₓ₋∞ (x² - x + 2)/(x² + √(x³ - 2x²))
limₓ₋∞ (x - √(x - 2))/x = limₓ₋∞ (1 - 1/x + 2/x²)/(1 + √(1/x - 2/x²))
limₓ₋∞ (x - √(x - 2))/x = (1 - 1/∞ + 2/∞²)/(1 + √(1/∞ - 2/∞²))
limₓ₋∞ (x - √(x - 2))/x = (1 - 0 + 0)/(1 + √(0 - 0))
limₓ₋∞ (x - √(x - 2))/x = 1/1
limₓ₋∞ (x - √(x - 2))/x = 1
21. tolong bantu Soal limit fungsi akar kelas 11
Limit fungsi menggunakan konsep L'hopital
22. contoh soal dan jawaban limit fungsi.
Jawaban:
lim
x → 2
2x = …
Pembahasan / penyelesaian soal
lim
x → 2
2x = 2 . 2 = 4
23. contoh soal limit tak hingga beserta jawabannya
Jawab:
6
Penjelasan dengan langkah-langkah:
[tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{x^2+2x}-\sqrt{x^2-6x+1} \right )[/tex]
Ingat lagi rumus cepat limit tak hingga [tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{ax^2+bx+c}-\sqrt{ax^2+qx+r} \right )=\frac{b-q}{2\sqrt{a}}[/tex]. Manipulasi soal sehingga melibatkan rumus nya
[tex]\displaystyle \lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{x^2+2x}-\sqrt{x^2-6x+1} \right )\\=\lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-2x+x-\sqrt{x^2+2x}+x-\sqrt{x^2-6x+1} \right )\\=\lim_{x\to\infty}\left ( \sqrt{4x^2+16x+8}-\sqrt{4x^2}+\sqrt{x^2}-\sqrt{x^2+2x}+\sqrt{x^2}-\sqrt{x^2-6x+1} \right )\\=\frac{16-0}{2\sqrt{4}}+\frac{0-2}{2\sqrt{1}}+\frac{0-(-6)}{2\sqrt{1}}\\=4-1+3\\=6[/tex]
24. Contoh soal limit fungsi
Jawaban:
CONTOHNYA ADA PADA GAMBAR
Penjelasan dengan langkah-langkah:
SEMOGA MEMBANTU
SEMANGAT BELAJAR
25. Contoh soal soal limit fungsi beserta jawabannya
Pertanyaan
lim x → 3 : x² + 1
Jawaban
lim x → 3 : 3² + 1
= 9 + 1
= 10
26. contoh soal teorima limit utama
contoh soal dan pembahasan nya
Nomor 1

A. 0
B. 3
C. 5
D. 7
E. Tak hingga
Pembahasan
Limit seperti soal diatas akan menghasilkan angka yang dilimitkan yaitu 7.
Jawaban: D
Nomor 2

A. 1
B. 3
C. 4
E. x
D Tak hingga
Pembahasan
Ganti x = 3
3 + 1 = 4
Jawaban: C
Nomor 3

A. 0
B. 1
C. 5
D. 6
E. Tak hingga
Pembahasan
Ganti x = 0
5 . 0 + 1 = 1
Jawaban: B
Nomor 4

A. 0
B. 1
C. 2
D. 3
E. 4
Pembahasan
Ganti x = 0
(5 . 0 - 1) (0 - 1) = (-1) . (-1) = 1
Jawaban: B
Nomor 5

A. 1
B. 2
C. 5
D. 10
E. Tak hingga
Pembahasan
Ganti x = 10
(10 + 2) / (10 - 4) = 12/6 = 2
Jawaban: B
27. contoh soal limit beserta jawabanya
Semoga membantu:)
Maaf klo gak jelas fotonya:)
28. contoh soal limit tak terhingga
ini yaaa lim tak hingga kan
29. contoh soal limit yang berhubungan tentang kehidupan, dalam bentuk soal cerita,, atau blog nya aja boleh
kehidupan manusia atau seperti apa???
30. Tolong soal mtk limit bentuk akar ini
rumus cepatnya untuk tipe soal
[tex] \sqrt{a {x}^{2} + bx + c} - \sqrt{a{x}^{2} + qx + r } [/tex]
adalah =
[tex] \frac{b - q}{2 \sqrt{a} } [/tex]
maka, untuk nomor 1 bisa juga ditulis
[tex] \sqrt{4 {x}^{2} + 0x - 1 } - \sqrt{4 {x}^{2} - 6x + 5 } [/tex]
jadi, jawabannya untuk nomor 1 =
[tex] \frac{0 - ( - 6)}{2 \sqrt{4} } = \frac{6}{4} = \frac{3}{2} [/tex]
nomor 2, bisa ditulis dengan
[tex] \sqrt{ {x}^{2} + 3x - 2} -(x + 1) \\ \sqrt{ {x}^{2} + 3x - 2} - \sqrt{ {(x + 1)}^{2} } \\ \sqrt{ {x}^{2} + 3x - 2} - \sqrt{ {x}^{2} + 2x + 1} [/tex]
maka didapatkan hasilnya menggunakan rumus
[tex] \frac{3 - 2}{2 \sqrt{1} } = 1[/tex]
#cmiiw #semoga membantu
31. Contoh soal limit tak tentu dan tentu
Jawaban:
Contoh Soal Limit Fungsi Aljabar
Penjelasan dengan langkah-langkah:
maaf kalo salah kak
32. Contoh soal limit dan penyelesaiannya
Jawaban:
Jawaban Terlampir di atas
- PelitaRayaSchool -
33. 1.mencari rumus dari sifat "limit fungsi bentuk tak hingga" dan tulis contoh soal dari masing-masing sifat tersebut
Jawaban:
Sifat limit fungsi bentuk tak hingga adalah sebagai berikut:
1.Limit tak hingga dari konstanta kali suatu fungsi adalah sama dengan konstanta dikalikan dengan limit tak hingga dari fungsi tersebut. Dalam simbol:
lim k*f(x) = k * lim f(x) (untuk k ≠ 0)
x→∞
Contoh soal:
Tentukan limit dari fungsi f(x) = 5x^3 ketika x mendekati tak hingga.
Jawab:
lim 5x^3 = 5 * lim x^3 = tak hingga
x→∞
2.Limit tak hingga dari penjumlahan atau pengurangan fungsi-fungsi yang memiliki limit tak hingga sama dengan limit tak hingga dari setiap fungsi. Dalam simbol:
lim [f(x) ± g(x)] = lim f(x) ± lim g(x)
x→∞
Contoh soal:
Tentukan limit dari fungsi f(x) = x^2 + 2x dan g(x) = 3x - 1 ketika x mendekati tak hingga.
Jawab:
lim [f(x) + g(x)] = lim f(x) + lim g(x)
x→∞
lim [x^2 + 2x + 3x - 1] = lim x^2 + lim 5x - lim 1 = tak hingga
x→∞ = tak hingga = tak hingga
3.Limit tak hingga dari perkalian atau pembagian dua fungsi yang memiliki limit tak hingga sama dengan limit tak hingga dari masing-masing fungsi dikalikan atau dibagi. Dalam simbol:
lim [f(x) * g(x)] = lim f(x) * lim g(x)
x→∞
lim [f(x) / g(x)] = lim f(x) / lim g(x)
x→∞
Contoh soal:
Tentukan limit dari fungsi f(x) = 2x^2 dan g(x) = x + 1 ketika x mendekati tak hingga.
Jawab:
lim [f(x) * g(x)] = lim f(x) * lim g(x)
x→∞
lim [2x^2 * (x + 1)] = lim 2x^3 + lim 2x^2
x→∞ = tak hingga = tak hingga
Tentukan limit dari fungsi f(x) = 3x^2 dan g(x) = 4x - 1 ketika x mendekati tak hingga.
Jawab:
lim [f(x) / g(x)] = lim f(x) / lim g(x)
x→∞
lim [3x^2 / (4x - 1)] = lim (3/4) * (x^2 / (x - 1/4)) = tak hingga
x→∞ = tak hingga = tak hingga
Semoga membantu!
34. limit fungsi tak hingga bentuk akar
Penjelasan dengan langkah-langkah:
[tex]lim \: x = > \infty [/tex]
[tex]( \sqrt{x + 1} - \sqrt{x} )( \sqrt{x + 1} ) \\ =\sqrt{ {x}^{2} + 2x + 1 } - \sqrt{ {x}^{2} + x } \\ = \frac{2 - 1}{2 \sqrt{1} } \\ = \frac{1}{2} [/tex]
35. akar Sekawan bentuk limit
Metode perkalian sekawan umumnya digunakan untuk menentukan limit fungsi berbentuk akar. Sama seperti metode lainnya, metode perkalian sekawan digunakan jika hasil dari substitusi menunjukkan nilai yang tak tentu (∞⁄∞ atau 0⁄0). Perkalian sekawan bertujuan untuk mengubah bentuk suatu fungsi agar ketika dilakukan substitusi dihasilkan suatu nilai tertentu.
Contoh Soal :
Tentukan nilai dari :
lim
x → 2 2 − √x + 2
x − 2
Pembahasan :
Untuk mempermudah penulisan, misalkan:
2 − √x + 2 = f(x)
x − 2
Dengan metode perkalian sekawan diperoleh :
lim
x → 2 f(x) = lim
x → 2 2 − √x + 2 . 2 + √x + 2
x − 2 2 + √x + 2
lim
x → 2 f(x) = lim
x → 2 4 − (x + 2)
(x − 2) (2 + √x + 2)
lim
x → 2 f(x) = lim
x → 2 2 − x
(x − 2) (2 + √x + 2)
lim
x → 2 f(x) = lim
x → 2 −(x − 2)
(x − 2) (2 + √x + 2)
lim
x → 2 f(x) = -1
2 + √2 + 2
lim
x → 2 f(x) = -1
2 + √4
lim
x → 2 f(x) = -1
4
36. Help:"Materi: Limit tak hingga bentuk akar
tolong yang bener perranyaan nya susah amat
37. tolong jawab soal limit akar ini
LImit
f(x) = cos 2x
lim( h->0) { f*(x + 2h) - 2 f(x) + f(x - 2h) }/ (2h)²
..
38. Contoh soal teorema limit
1. Buktikan kalau [tex]\lim_{n \to 0} \frac{sin(x)}{x}[/tex] = 1! (Kalau pakai L'Hopitals' Rule, akan terjadi Circular Reasong, jadi pakai Trigonometri)
2. Buktikan kalau [tex]\lim_{n \to 0} \frac{1-x}{x}[/tex] itu tidak ada!
3. Buktikan [tex]\lim_{n \to \infty} \frac{cos(x)}{x}[/tex] itu 0 dengan menggunakan sandwich/squeeze theorem
4. Buktikan L'Hopital's Rule
39. Nilai limit bentuk akar
Jawab:maksudnya
Penjelasan dengan langkah-langkah:apa
40. soal limit bentuk seperti apa
Penjelasan dengan langkah-langkah:
Maksud gurumu itu semua limit tak hingga bentuk tak tentu
Contoh
Bentuk tak tentu (∞/∞)
[tex]\lim_{x \to \infty} \frac{f(x)}{g(x)}\\\lim_{x \to \infty} \frac{3x^2-4x+6}{2x^2+x-5}[/tex]
Bentuk tak tentu (∞-∞)
[tex]\lim_{x \to \infty} \sqrt{f(x)} -\sqrt{g(x)} \\ \lim_{x \to \infty} \sqrt{x+1} -\sqrt{x-1} \\ \lim_{x \to \infty} \sqrt{x^2+2x-1} -\sqrt{x^2-4x+5}[/tex]